

Transcription and Translation (AHL)

Protein Synthesis: Transcription and Translation

Image adapted from National Human Genome Research Institute

http://www2.geneticsolutions.com/PageReq?id=1530:1873&InPopUp=true

DNA has a sense strand and an antisense strand

The antisense strand is complementary to the sense strand.

mRNA will be the same as the coding DNA - except U replaces T.

http://images1.clinicaltools.com/images/gene/antisense.jpg

Protein Synthesis: Transcription and Translation

http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/translation.swf
lmages from: http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/transcription.swf

Transcription and Translation are both carried out in a 5'→3' direction

http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/translation.swf

Images from:

http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/transcription.swf

Transcription

Transcription of the gene results in an mRNA molecule which can be posted out of the nucleus. It is then translated into the polypeptide...

http://www.stoluf.edu/peuple/giaumini/flashunimut /molgenetics/transcription.awf RNA polymerase moves along the antisense strand of DNA, using free nucleoside triphosphates to make a strand of mRNA.

mRNA is elongated until the ribosome reaches the terminator region:

 http://www.stolaf.edu/people/giannini/flash animat/molgenetics/transcription.swf

Eukaryote pre-mRNA contains exons and introns

Introns are non-coding regions that need to be removed before translation

 http://bcs.whfreeman.com/thelifewire/content/ch p14/1401s.swf

The structure of tRNA matches its function.

http://molbioandbiotech.files.wordpress.com/2007/09/trna1.gif

tRNA is activated by a tRNA activating enzyme

tRNA delivers amino acids to the growing polypeptide chain in translation.

It picks up new amino acids when activated by a specific tRNA activating enzyme.

This uses ATP.

There are 20 of these enzymes, corresponding to the 20 amino acids, for which the tRNA molecule has the complementary anticodon.

tRNA is activated by a tRNA activating enzyme

tRNA delivers amino acids to the growing polypeptide chain in translation.

It picks up new amino acids when activated by a specific tRNA activating enzyme.

This uses ATP.

There are 20 of these enzymes, corresponding to the 20 amino acids, for which the tRNA molecule has the complementary anticodon.

The unique 3D

http://www.phschool.com/science/biology_place/

biocoach/translation/addaa.html

structure of each tRNA
molecule means it
binds only to the
specific amino acid

http://www.phschool.com/science/biology_place/biocoach/translation/addaa.html

 http://www.phschool.com/science/biology_pl ace/biocoach/translation/addaa.html

Translation

4. Termination

When a STOP codon is reached, the polypeptide is released.

Ribosome picks up a new strand of mRNA.

Polypeptide Anticodon

mRNA Codons

1. Initiation

Ribosome binds with mRNA at the 'Met' (AUG) codon (Start codon)

First tRNA molecules are brought in.

3. Translocation

Ribosome releases used tRNA and moves along mRNA to the next codon.

Next tRNA and amino acid are brought in elongating the

Next tRNA and amino acid are brought in, elongating the polypeptide further.

2. Elongation

Peptide bond is formed between the amino acids, making a polypeptide.

a. codon recognition tRNA binds

b. peptide bond formation amino acid added

http://www.anselm.edu/homepage/jpitocch/genbio/translat.JPG

Translation

4. Termination

When a STOP codon is reached, the polypeptide is released.

Ribosome picks up a new strand of mRNA.

1. Initiation

Ribosome binds with mRNA at the 'Met' (AUG) codon (Start codon)

First tRNA molecules are brought in.

3. Translocation

Ribosome releases used tRNA and moves along mRNA to the next codon.

Next tRNA and amino acid are brought in, elongating the polypeptide further.

2. Elongation

Peptide bond is formed between the amino acids, making a polypeptide.

a. codon recognition
 tRNA binds

b. peptide bond formation

amino acid added

Click for animations

Initiation of translation

- mRNA binds to small ribosomal subunit at binding site
- 2. tRNA carrying 'Met' binds to start codon
- 3. Large ribosomal subunit attaches
- tRNA with anticodon corresponding to the next codon attaches
- 5. Peptide bond forms between amino acids
- Elongation continues in a 5' 3' direction along the mRNA

http://kvhs.nbed.nb.ca/gallant/biology/translation_initiation.jpg

 http://wwwclass.unl.edu/biochem/gp2/m_biology/animation/gene/gene_a3.html

Peptide bonds are formed between amino acids:

http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/translation.swf

Termination of translation

Ribosome reaches the STOP codon

Release factor attaches

tRNA released to find another amino acid

polypeptide released

components of the ribosome break apart

all are used again

