

Cellular Respiration Core & AHL (or SL Option C!)

http://www.youtube.com/watch?v=3aZrkdzrd04
http://www.youtube.com/watch?v=VCpNk92uswY

"The controlled release of energy

by enzymes:

metabolic pathways and cycles!

"The controlled release of energy

pathways and cycles?

"The controlled release of energy

How can cells control the rate of enzyme catalysed pathways and cycles?

end product inhibition!

"The controlled release of energy from organic compounds in cells

glucose/ carbohydrates

"The controlled release of energy from organic compounds in cells

"The controlled release of energy from organic compounds in cells to form ATP"

"The controlled release of energy from organic compounds in cells to form ATP"

"The controlled release of energy from organic compounds in cells to form ATP"

"The controlled release of energy from organic compounds in cells to form ATP"

muscle contraction

active transport

protein synthesis

energetic processes

vesicle transport

DNA/ RNA replication

cell signalling

Respiration generates ATP from ADP and phosphate ions in the cell.

This high energy bond is a temporary store of energy, which is broken to release energy in cell processes.

http://www.biologyinmotion.com/atp/index.html

ATP is not a stable long-term energy store. Cells in tissues which have a high energy demand are rich in mitochondria, in order to keep generating sufficient ATP. Long-term stores include lipids and glycogen, which can be metabolised through respiration as needed.

http://www.biologyinmotion.com/atp/

Cell Respiration is an enzyme-controlled metabolic pathway which can be controlled by end-product inhibition.

Cell Respiration is an enzyme-controlled metabolic pathway which can be controlled by end-product inhibition.

Cell Respiration is an enzyme-controlled metabolic pathway which can be controlled by end-product inhibition.

High levels of ATP inhibit hexokinase at the allosteric site, giving a conformational change of the active site. This is reversed when ATP levels return to normal.

 $C_6H_{12}O_6$

glucose

(an organic molecule)

```
C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> +6O<sub>2</sub>
oxygen:
aerobic respiration
gives a better
yield of
ATP
```

$$C_6H_{12}O_6 + 6O_2 \xrightarrow{respiration} 6CO_2 + 6H_2O$$

Label the parts:

http://en.wikipedia.org/wiki/Mitochondrion

Make your own Mitochondria ©

First: Remember Oxidation and Reduction!?

Many biochemical reactions are classed as either

REDUCTION or OXIDATION

Many biochemical reactions are classed as either

REDUCTION or OXIDATION

electrons are gained

or

oxygen is removed

or

hydrogen is gained

electrons are lost

oxygen is added

hydrogen is lost

COMPARE OXIDATION AND REDUCTION

COMPARE OXIDATION AND REDUCTION

remember: OILRIG

Oxidation / Reduction (Redox) Examples

Oxidized / reducing agent...

Nice Resource – good explanation!

http://www.chemistry.co.nz/redox new.htm

Back to work...

glycolysis

G3P is oxidised (lose electrons and hydrogens)

G3P is oxidised (lose electrons and hydrogens)

NAD⁺ is reduced (it gains 2 electrons and 2 hydrogens)

G3P is oxidised (lose electrons and hydrogens)

- -Carried to electron transport chain
- -Energy from electrons
- -Pumps H⁺ across inner mitochondrial membrane
- -Generates H⁺ concentration gradient
- -Powers ATP synthase, making ATP

Another electron carrier we'll see later:

Glycolysis Animations

FRUCTOSE-1,6-BISPHOSPHATE TO GLYCERALDEHDE PHOSPHATE AND DIHYDROXYACETONE PHOSPHATE

Fructose-bisphosphate aldolase EC 4.1.2.13

Schiff Base (imine) formation

dk() d() d D D bb bb

http://tinyurl.com/ydl5jkn

The enzyme hexokinase transfers a phosphate group from ATP to glucose. The suffix kinase means that a phosphate group will be transferred. http://tinyurl.com/oc2v3

Copyright @ The McGraw-Hill Companies, Inc.

How Glycolysis Works

http://tinyurl.com/yayelo9